A Game Player Expertise Level Classification System Using Electroencephalography (EEG)
نویسندگان
چکیده
The success and wider adaptability of smart phones has given a new dimension to the gaming industry. Due to the wide spectrum of video games, the success of a particular game depends on how efficiently it is able to capture the end users’ attention. This leads to the need to analyse the cognitive aspects of the end user, that is the game player, during game play. A direct window to see how an end user responds to a stimuli is to look at their brain activity. In this study, electroencephalography (EEG) is used to record human brain activity during game play. A commercially available EEG headset is used for this purpose giving fourteen channels of recorded EEG brain activity. The aim is to classify a player as expert or novice using the brain activity as the player indulges in the game play. Three different machine learning classifiers have been used to train and test the system. Among the classifiers, naive Bayes has outperformed others with an accuracy of 88%, when data from all fourteen EEG channels are used. Furthermore, the activity observed on electrodes is statistically analysed and mapped for brain visualizations. The analysis has shown that out of the available fourteen channels, only four channels in the frontal and occipital brain regions show significant activity. Features of these four channels are then used, and the performance parameters of the four-channel classification are compared to the results of the fourteen-channel classification. It has been observed that support vector machine and the naive Bayes give good classification accuracy and processing time, well suited for real-time applications.
منابع مشابه
Evaluating player task engagement and arousal using electroencephalography
Advances in affective computing technologies have made it possible for researchers to investigate brain function while users interact in virtual environments. Progress in sensors and algorithms for off-the-shelf EEG systems has made it possible for gaming researchers to perform real-time estimation of human cognitive and affective states using EEG. In this study our aim was to coordinate “Task ...
متن کاملEvaluation of an Adaptive Game that Uses EEG Measures Validated during the Design Process as Inputs to a Biocybernetic Loop
Biocybernetic adaptation is a form of physiological computing whereby real-time data streaming from the brain and body is used by a negative control loop to adapt the user interface. This article describes the development of an adaptive game system that is designed to maximize player engagement by utilizing changes in real-time electroencephalography (EEG) to adjust the level of game demand. Th...
متن کاملEEG-based Emotion Recognition for Game Difficulty Control
Balance design taking game difficulty into account has an important role in game design. In recent years, a number of studies have tried to adjust difficulty by using various player dependent difficulty detection algorithms. But most of these methods need customizing its algorithm for each game. In this paper, we investigate the way to find adaptive game difficulty levels according to player’s ...
متن کاملAn Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...
متن کاملA Unique Approach of Noise Elimination from Electroencephalography Signals between Normal and Meditation State
In this paper, unique approach is presented for the electroencephalography (EEG) signals analysis. This is based on Eigen values distribution of a matrix which is called as scaled Hankel matrix. This gives us a way to find out the number of Eigen values essential for noise reduction and extraction of signal in singular spectrum analysis. This paper gives us an approach to classify the EEG signa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017